Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2417694.v1

ABSTRACT

Background As a national effort to better understand the current pandemic, three cohorts collect sociodemographic and clinical data from COVID-19 patients from different target populations within the German National Pandemic Cohort Network (NAPKON). Furthermore, the German Corona Consensus Dataset (GECCO) was introduced as a harmonized basic information model for COVID-19 patients in clinical routine. To compare the cohort data with other GECCO-based studies, data items are mapped to GECCO. As mapping from one information model to another is complex, an additional consistency evaluation of the mapped items is recommended to detect possible mapping issues or source data inconsistencies.Objectives The goal of this work is to assure high consistency of research data mapped to the GECCO data model. In particular, it aims at identifying contradictions within interdependent GECCO data items of the German national COVID-19 cohorts to allow investigation of possible reasons for identified contradictions. We furthermore aim at enabling other researchers to easily perform data quality evaluation on GECCO-based datasets and adapt to similar data models.Methods All suitable data items from each of the three NAPKON cohorts are mapped to the GECCO items. A consistency assessment tool (dqGecco) is implemented, following the design of an existing quality assessment framework, retaining their-defined consistency taxonomies, including logical and empirical contradictions. Results of the assessment are verified independently on the primary data source.Results Our consistency assessment tool helped in correcting the mapping procedure and reveals remaining contradictory value combinations within COVID-19 symptoms, vital-signs, and COVID-19 severity. Consistency rates differ between the different indicators and cohorts ranging from 95.84% up to 100%.Conclusion An efficient and portable tool capable to discover inconsistencies in the COVID-19 domain has been developed and applied to three different cohorts. As the GECCO dataset is employed in different platforms and studies, the tool can be directly applied there or adapted to similar information models.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.22.21268268

ABSTRACT

Background: COVID-19 has so far affected more than 250 million individuals worldwide, causing more than 5 million deaths. Several risk factors for severe disease have been identified, most of which coincide with advanced age. In younger individuals, severe COVID-19 often occurs in the absence of obvious comorbidities. Guided by the finding of cytomegalovirus (CMV)-specific T cells with some cross-reactivity to SARS-CoV-2 in a COVID-19 intensive care unit (ICU) patient, we decided to investigate whether CMV seropositivity is associated with severe or critical COVID-19. Methods: National German COVID-19 bio-sample and data banks were used to retrospectively analyze the CMV serostatus of patients who experienced mild (n=101), moderate (n=130) or severe to critical (n=80) disease by CMV IgG serology. We then investigated the relationship between disease severity and CMV serostatus via statistical models. Results: Non-geriatric patients (< 70 years) with severe COVID-19 were found to have a very high prevalence of CMV-seropositivity, while CMV status distribution in individuals with mild disease was similar to the prevalence in the German population; interestingly, this was not detectable in older patients. Prediction models support the hypothesis that the CMV serostatus might be a strong biomarker in identifying younger individuals with a higher risk of developing severe COVID-19. Conclusions: We identified CMV-seropositivity as a potential novel risk factor for severe COVID-19 in non-geriatric individuals in the studied cohorts. More mechanistic analyses as well as confirmation of similar findings in cohorts representing the currently most relevant SARS-CoV-2 variants should be performed shortly.


Subject(s)
COVID-19 , Cytomegalovirus Infections
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.08.463613

ABSTRACT

ObjectiveThere is a growing debate about the involvement of the gut microbiome in COVID-19, although it is not conclusively understood whether the microbiome has an impact on COVID-19, or vice versa, especially as analysis of amplicon data in hospitalized patients requires sophisticated cohort recruitment and integration of clinical parameters. Here, we analyzed fecal and saliva samples from SARS-CoV-2 infected and post COVID-19 patients and controls considering multiple influencing factors during hospitalization. Design16S rRNA gene sequencing was performed on fecal and saliva samples from 108 COVID-19 and 22 post COVID-19 patients, 20 pneumonia controls and 26 asymptomatic controls. Patients were recruited over the first and second corona wave in Germany and detailed clinical parameters were considered. Serial samples per individual allowed intra-individual analysis. ResultsWe found the gut and oral microbiota to be altered depending on number and type of COVID-19-associated complications and disease severity. The occurrence of individual complications was correlated with low-risk (e.g., Faecalibacterium prausznitzii) and high-risk bacteria (e.g., Parabacteroides). We demonstrated that a stable gut bacterial composition was associated with a favorable disease progression. Based on gut microbial profiles, we identified a model to estimate mortality in COVID-19. ConclusionGut microbiota are associated with the occurrence of complications in COVID-19 and may thereby influencing disease severity. A stable gut microbial composition may contribute to a favorable disease progression and using bacterial signatures to estimate mortality could contribute to diagnostic approaches. Importantly, we highlight challenges in the analysis of microbial data in the context of hospitalization.


Subject(s)
Dysbiosis , Pneumonia , Severe Acute Respiratory Syndrome , COVID-19
5.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-869535.v1

ABSTRACT

Background: Symptoms of primary HIV infection, including fever, rash, and headache, are nonspecific and are often described as flu-like. COVID-19 vaccination side effects, such as fever, which occur in up to 10% of people following COVID-19 vaccination, can make the diagnosis of acute HIV infection even more challenging.Case PresentationA 26-year-old man presented with fever and headache following COVID-19 vaccination. The symptoms were initially thought to be vaccine side effects. A diagnostic workup was conducted due to persisting fever and headache > 72 hours following vaccination, and he was diagnosed with Fiebig stage II acute HIV infection, 3 weeks after having unprotected anal intercourse with another man.ConclusionThorough anamnesis is key to estimating the individual risk of primary HIV infection, in patients presenting with flu-like symptoms. Early diagnosis and initiation of antiretroviral therapy is associated with better prognosis and limits transmission of the disease.


Subject(s)
COVID-19 , HIV Infections , Fever
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.20.21260845

ABSTRACT

ABSTRACT T cell immunity is crucial for the control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and has been widely characterized on a quantitative level. In contrast, the quality of such T cell responses has been poorly investigated, in particular in the case of CD8 + T cells. Here, we explored the quality of SARS-CoV-2-specific CD8 + T cell responses in individuals who recovered from mild symptomatic infections, through which protective immunity should develop, by functional characterization of their T cell receptor (TCR) repertoire. CD8 + T cell responses specific for SARS-CoV-2-derived epitopes were low in frequency but could be detected robustly early as well as late - up to twelve months - after infection. A pool of immunodominant epitopes, which accurately identified previous SARS-CoV-2 infections, was used to isolate TCRs specific for epitopes restricted by common HLA class I molecules. TCR-engineered T cells showed heterogeneous functional avidity and cytotoxicity towards virus-infected target cells. High TCR functionality correlated with gene signatures of T cell function and activation that, remarkably, could be retrieved for each epitope:HLA combination and patient analyzed. Overall, our data demonstrate that highly functional HLA class I TCRs are recruited and maintained upon mild SARS-CoV-2 infection. Such validated epitopes and TCRs could become valuable tools for the development of diagnostic tests determining the quality of SARS-CoV-2-specific CD8 + T cell immunity, and thereby investigating correlates of protection, as well as to restore functional immunity through therapeutic transfer of TCR-engineered T cells.


Subject(s)
COVID-19 , Coronavirus Infections , Severe Acute Respiratory Syndrome
7.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-677167.v1

ABSTRACT

Infection with the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is controlled by the host´s immune response1-4, but longitudinal follow-up studies of virus-specific immunity to evaluate protection from re-infection are lacking. Here, we report the results from a prospective study that started during the first wave of the COVID-19 pandemic in spring 2020, where we identified 91 convalescents from mild SARS-CoV-2 infection among 4554 health care workers. We followed the dynamics and magnitude of spike-specific immunity in convalescents during the spontaneous course over ≥ 9 months, after SARS-CoV-2 re-exposure and after BNT162b2 mRNA vaccination. Virus-neutralizing antibodies and spike-specific T cell responses with predominance of IL-2-secreting polyfunctional CD4 T cells continuously declined over 9 months, but remained detectable at low levels. After a single vaccination, convalescents simultaneously mounted strong antibody and T cell responses against the SARS-CoV-2 spike proteins. In naïve individuals, a prime vaccination induced preferentially IL-2-secreting CD4 T cells that preceded production of spike-specific virus-neutralizing antibodies after boost vaccination. Response to vaccination, however, was not homogenous. Compared to four individuals among 455 naïve vaccinees (0.9%), we identified 5/82 (6.1%) convalescents with a delayed response to vaccination. These convalescents had originally developed dysfunctional spike-specific immune responses after SARS-CoV-2 infection, and required prime and boost vaccination to develop strong spike-specific immunity. Importantly, during the second wave of the COVID-19 pandemic in fall/winter of 2021 and prior to vaccination we detected a surge of virus-neutralizing antibodies consistent with re-exposure to SARS-CoV-2 in 6 out of 82 convalescents. The selective increase in virus-neutralizing antibodies occurred without systemic re-activation of spike-specific T cell immunity, whereas a single BNT162b2 mRNA vaccination sufficed to induce strong spike-specific antibody and systemic T cell responses in the same individuals. These results support the notion that BNT162b2 mRNA vaccination synchronizes spike-specific immunity in all convalescents of mild SARS-CoV-2 infection and may provide additional protection from re-infection by inducing more rigorous stimulation of spike-specific T cell immunity than re-exposure with SARS-CoV-2.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
8.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3678599

ABSTRACT

Background: Hospital staff are at high risk of infection during the coronavirus disease (COVID-19) pandemic. We analysed the exposure characteristics, efficacy of protective measures, and transmission dynamics in this hospital-wide prospective seroprevalence study.Methods: Overall, 4554 individuals were tested for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG antibodies using a chemiluminescent immunoassay. Individual risk factors, use of personal protective equipment (PPE), occupational exposure, previous SARS-CoV-2 infection, and symptoms were assessed using a questionnaire and correlated to anti-SARS-CoV-2 IgG antibody titres and PCR testing results. Odds ratios with corresponding exact 95% confidence intervals were used to evaluate associations between individual factors and seropositivity. Spatio-temporal trajectories of SARS-CoV-2-infected patients and staff mobility within the hospital were visualised to identify local hotspots of virus transmission.Findings: The overall seroprevalence of anti-SARS-CoV-2-IgG antibody was 2•4% [95% CI 1•9–2•9]. Patient-facing staff, including those working in COVID-19 areas, had a similar probability of being seropositive as non-patient-facing staff. Prior interaction with SARS-CoV-2-infected co-workers or private contacts and unprotected exposure to COVID-19 patients increased the probability of seropositivity. Loss of smell and taste had the highest positive predictive value for seropositivity. The rate of asymptomatic SARS-CoV-2 infections was 25•9%, and higher anti-SARS-CoV-2 IgG antibody titres were observed in symptomatic individuals. Spatio-temporal hotspots of SARS-CoV-2-positive staff and patients only showed partial overlap.Interpretation: Patient-facing work in a healthcare facility during the SARS-CoV-2 pandemic may be safe if adequate PPE and hygiene measures are applied. The high numbers of asymptomatic SARS-CoV-2 infections that escaped detection by symptomatic testing underline the value of cross-sectional seroprevalence studies. Unprotected contact is a major risk factor for infection and argues for the rigorous implementation of hygiene measures. Funding: The study was funded by the Board of Directors of the University Hospital rechts der Isar, Munich.Declaration of Interests: The authors declare no competing interests.Ethics Approval Statement: The study was approved by the Ethics Committee of the Technical University of Munich, School of Medicine (approval number: 216/20S).


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
9.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.04.20206136

ABSTRACT

Background Hospital staff are at high risk of infection during the coronavirus disease (COVID-19) pandemic. We analysed the exposure characteristics, efficacy of protective measures, and transmission dynamics in this hospital-wide prospective seroprevalence study. Methods and Findings Overall, 4554 individuals were tested for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG antibodies using a chemiluminescent immunoassay. Individual risk factors, use of personal protective equipment (PPE), occupational exposure, previous SARS-CoV-2 infection, and symptoms were assessed using a questionnaire and correlated to anti-SARS-CoV-2 IgG antibody titres and PCR testing results. Odds ratios with corresponding exact 95% confidence intervals were used to evaluate associations between individual factors and seropositivity. Spatio-temporal trajectories of SARS-CoV-2-infected patients and staff mobility within the hospital were visualised to identify local hotspots of virus transmission. The overall seroprevalence of anti-SARS-CoV-2-IgG antibody was 2.4% [95% CI 1.9-2.9]. Patient-facing staff, including those working in COVID-19 areas, had a similar probability of being seropositive as non-patient-facing staff. Prior interaction with SARS-CoV-2-infected co-workers or private contacts and unprotected exposure to COVID-19 patients increased the probability of seropositivity. Loss of smell and taste had the highest positive predictive value for seropositivity. The rate of asymptomatic SARS-CoV-2 infections was 25.9%, and higher anti-SARS-CoV-2 IgG antibody titres were observed in symptomatic individuals. Spatio-temporal hotspots of SARS-CoV-2-positive staff and patients only showed partial overlap. Conclusions Patient-facing work in a healthcare facility during the SARS-CoV-2 pandemic may be safe if adequate PPE and hygiene measures are applied. The high numbers of asymptomatic SARS-CoV-2 infections that escaped detection by symptomatic testing underline the value of cross-sectional seroprevalence studies. Unprotected contact is a major risk factor for infection and argues for the rigorous implementation of hygiene measures.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL